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Abstract

/ While the set packing polytope, through its connection with vertex

packing, has lent itself to fruitful investigations, little is known about the set

covering polytope. We characterize the class of valid inequalities for the set

covering polytope with coefficients equal to 0, 1 or 2, and give necessary and

sufficient conditions for such an inequality to be minimal and to be facet

defining. We show that all inequalities in the above class are contained in the

elementary closure of the constraint set, and that 2 is the largest value of k

such that all valid inequalities for the set covering polytope with integer

coefficients no greater than k are contained in the elementary closure. We

point out a connection between minimal inequalities in the class investigated

and certain circulant submatrices of the coefficient matrix. Finally, we discuss

a procedure for generating all the inequalities in the above class, as well as

inequalities that cut off a fractional solution to the linear programming

relaxation of the set covering problem, and inequalities whose addition to the

constraint set improves the lower bound given by a feasible solution to the

dual of the linear programming relaxation. / .
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1. Introduction

The set covering problem can be stated as

(SC) min{cx I Ax > 1, x a (0,111,

where A = (aij) is an a x n matrix with aij 8 (0,11, V i,j, and 1 is the

m-vector of l's. If Ax > 1 is replaced by Ax 1, the problem is called set

partitioning. Both models have applications to crew scheduling, facility

location, vehicle routing and a host of other areas (see Appendix to Balas and

Padberg [3] for a bibliography of applications).

If we reverse the inequality in the definition of (SC), we obtain the set

packing problem

(SP) maxfcx I Ax < 1, x a {0,11 n

which is known to be equivalent to the vertex packing problem on the

intersection graph GA of A. Both (SC) and (SP) are NP-complete problems

for a general 0-1 matrix A. As far as structural properties go, because of the

connection between (SP) and vertex packing, the properties of the set packing

polytope (the convex hull of points satisfying the constraints of (SP)) have

been thoroughly studied. In particular, many classes of facets of this

polytope have been identified (see, for instance, [6], [7]), as well as families of

matrices A for which the corresponding polytope is given by the linear

inequalities Ax < 1, 0 < x < 1. The same cannot be said about the set

covering polytope

P (A) := conv{x a in I Ax > 1, 0 < x < 1, x integer},

or its more relaxed relative, the polyhedron

P*(A) := convfx a Rn I Ax > 1, x > 0, x integer),

about which much less is known. In the following, we will denote

P(A) := {x x Re I Ax > 1, 0 < x < 1}, P*(A) := (x a en I Ax > 1, x > 0).

Let M and N be the row and column index sets, respectively, of A, and let
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and a. denote the rw and the ith-colm of A, respectlely. Y6 m'y ...
JR

R c M and S c N, we will write A for the submatrix of A whose rows and

columns are indexed by R and S, respectively. Also, we will denote AR

R =M 1
AN and AS = S. Finally, for i a M, we will denote N (j a N I a.. = 1.

A polyhedron is the intersection of a finite number of halfspaces. A

.polytope is a bounded polyhedron. A face of a polyhedron is the intersection

of the polyhedron with some of its boundary planes. For an n-dimensional

polyhedron, the O-dimensional faces are its vertices, the (n-1)-dimensional

faces are its facets. An inequality is valid for a polyhedron P if it is

satisfied by all x a P. An inequality ax > a 0  is dominated by, or is a

weakening of, the inequality Px > a0 , if a > P. If in addition a. > P.

for some j, then ax > a0 is strictly dominated by Px I c 0 . A coefficient

ai of a valid inequality ax > a0 is minimal if ax > a0 becomes invalid when

a. is decreased (without changing other coefficients). A valid inequality

whose coefficients are all minimal is called minimal. Thus a minimal inequal-

ity is one not strictly dominated by any valid inequality. An inequality ax >

a0 , valid for a polyhedron P, defines (or induces) a facet of P if and only if

ax = a0  for n (= dim P) affinely independent points x a P. Valid

inequalities that are facet defining are minimal, but the converse is not

. true.

Among the few facts known about the polyhedra P*(A) and P (A) are the

following: We assume throughout that A has no zero columns or zero rows.

1. Every vertex of P( CA) is a vertex of P (A); hence any inequality

' that defines a bounded facet of P*-(A) is also facet defining for PI(A); and

any facet defining inequality for PJ(A) that is satisfied by all x i P*(A)

i is also facet defining for P*_(A).

2



2. A valid inequality for P1 (A) (for P,*(A)) cuts off a vertex of P(A)

(of P$(A)7' if and t.yiif it" is jo -a positive linear cobination of

inequalities of the systea Ax > 1, 0 < x < 1 (of the system Ax > 1, x > 0).

*-: 3. P*-(A) is full dimensional. PI(A) is full dimensional if and only if

N'"> 2 for all i a M.

In the following we assume that PI(A) is full dimensional.

4. The inequality x. > 0 defines a facet of PI(A) if and only if

*" I (' j() I 1 for all i a M. It defines a facet of P1 (A) if and only if

\(j~l > 2 for all i a M.

5. The inequality x. < defines a facet of P/A).

6. All facet defining inequalities ax > a0 for P*-(A) (for PI(A)) have

a > 0if a0> 0.

7. The inequality

I(X.: jaw) .

defines a facet of Plt(A) if and only if there exists no k a N with C w.

It defines a facet of P (A) if and only if (i) there exists no k a M with

with jc Mj ; and (ii) there exists no j a Nz such that A*ou(j} contains

the circulant of order I A'I+ 1 with exactly one 0 in every row and column.

8. The only minimal valid inequalities (hence the only facet defining

inequalities) for Aj(A) (for P (A)) with integer coefficients and righthand

* side equal to 1 are those of the system Ax ) 1.

Statements 1 through 6 are easily seen to be true. A proof of statement

7 for P*(A) is to be found in [1], and for PI(A) in (5].

Proof of 8. Let ix > 1 be any inequality with i > 0, and let S

{j a N I i. > 0). If there exists i a M with Ni c S, then nx > 1 is either
U . J -

not minimal, or identical to some inequality of Ax > 1. Otherwise Ni \ S 4,

i a M, and hence R defined by Rj O, j a S, l 1, j a N \S, satisfies

3
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Ax- A> 1, but-.R = 0---1; thus inx P-l is not a valid .inequqlity for P*(A) or

PI(A).I

Valid inequalities for a polyhedron related to P*(A), namely the convex
I

hull of those x a P*(A) that satisfy a given inequality cx < z - 1, have
I

been studied in [1]. The inequalities derived there have been successfully

used as cutting planes, as reported in [2].

In this paper we characterize a class of facets of the polytope PI(A).

It is a well-known fact (see Chvatal [4]) that if one forms a positively

weighted sum of the inequalities of the system Ax > 1, 0 < x < 1, and rounds

up every coefficient on both sides, one gets a valid inequality. Such

inequalities are called rank 1 Chvatal inequalities. It is not easy, however, to

identify the conditions under which such an inequality is facet inducing. To

see the nature of the problem, consider the following

Nxample 1.1. Let

1110011001
A= 10101010

101100001!

Adding the rows of A, dividing by 2 and rounding up yields the inequality

x1 + x2 + x3 + x5 + x6 + x7 + x8 > 2

which is easily seen to define a facet of P(A). Now let A' be the matrix

obtained by adding to the three rows of A a fourth one,

(0 0 1 0 0 0 1 1).

The above inequality remains of course valid, but it does not define a

facet of PIA'). In fact, it becomes redundant, since the last inequality of

the system A'x > 1 cuts off the unique fractional vertex x ( , 2, 2, 0, 0, 0

0, 0) of P(A), and P(A') has only integer vertices: thus PI(A') * P(A').I

."-V., a ; 4J'''¢ '; ' '' -,3 -i:"," - ".L', -:'".5..,,-'. 5.-'-,5.-'.-.5 ." '5' .-. ;



2. A Class of Facets of P (A)

We will be studying inequalities of the form ax > 2, with a 0, 1 or 2,

j a N. As before, we let M and N be the row and column index sets,

respectively, of A. For each such inequality, we denote

Jt(a) = {j a N I a. = t}, t = 0, 1, 2

and simply write Jt for Jt(a) whenever the meaning is clear from the

context.

S
With each nonempty subset S c M we associate the inequality a x > 2,

where

S if a.. = 0 for all i t S

J 1J

1.- otherwise

Notice that if ISI 1, say S {i}, the inequality a x > 2 is

just a x > 1 multiplied by 2.
S

Let C denote the class of inequalities a x > 2 for all S c M.

It is easy to see that C is in fact the class of inequalities obtainable from

the system Ax > 1 by the following procedure, which we will also call C:

Procedure C

(i) Add the inequalities a x > 1, i a S;

(ii) divide the resulting inequality by ISI - r, 0.5 < a < 1; and

(iii) round up all coefficients to the nearest integer.
S

Thus for any S c M, a x > 2 is a valid inequality for P (A). To show

that the converse is also true, we define for every Q c N,

M(Q) :- {i a M I a.. = 0, V j a0),

with M(#) := M.

.4.
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Theozri 2.1. - Every valid- inequality Px >2 for P/A), with p

integer, j t N, is dominated by the inequality a x > 2, where S =

Proof. By contradiction. W.l.o.g., we may assume that P. C {0,1,2}..J

The inequality a x > 2 is well defined; for otherwise, i.e., if M(J0 (P)) = 1

then R defined by F. = 1, j a J0(P), R. = 0 otherwise, satisfies Ax > 1

and violates Px > 2, a contradiction.

If Px 2_ 2 is not dominated by a x > 2 , then Pj < a j for some

j * N. From the definition of a with S = M(J0 (P)), Pj = 0 implies
S S

a. =0; hence P. = 1 and a. = 2. This in turn implies that

a.. 1 for all i a M(J0 (p)). Therefore R defined by R. =1, for

j C J0 U {j } j = 0 otherwise, satisfies Ax > 1, 0 < x < 1, but violates

"x > 2, a contradiction.I

Thus every valid inequality for P (A) with coefficients equal to 0, 1 or

2 is dominated by some inequality in the class C. From now on we therefore

restrict our attention to this family.

" -..- Next we identify those members of the class C that are not strictly

dominated by other members. Given any pair of inequalities a x > 2 and

a T x > 2 in C, such that J (aS = (aT) and T c S, it is clear from the

0 T
definitions that a Sx > 2 dominates a x > 2. Hence among all inequalities

SS
,'/ ax > 2 with a fixed Jog it is sufficient to consider those with S = M(J0)

Further, given any inequality a x > 2 with S = M(J0 ), we will say that

4' the set 0 is Aximal if for every j a J1  there exists kz \ {j}

such that alk = 1 for all i a M(J0u~j}). In other words, J0 is max-

imal if transferring any column from J to J0  requires the transfer of some

column from J to J This concept plays an important role in the sequel.

1 ,
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!S
Theorm 2.2. The inequality a x ) 2, where S = is minimal if and

only if JO is maximal.

Proof. Necessity. If J is not maximal, then there exists j E J such

that for every k a J \ (j}, aik = 0 for some i a M(J0u{j}). But then
T S

the inequality a Tx > 2, where T = M(J0u{j}), strictly dominates a x > 2.

Sufficiency. Suppose a Sx > 2 is not minimal. Then there exists aTx > 2
in C such that T <aS and T S<a for some j f N \ Jo(a if

* since* thi N\ 0()
j, J2 (a S), then T 'S; but since S M(Jo(aS this implies Jo(aT) C

S T S S S
Jo(aS, contrary to a < a . Hence j a J(a) But then J(a ) u {j}

C jo(a T ) and for all k a J (aS) \ (i. there exists some i a M(Jo(a )u{j 1)
01 0

such that aik = 0 (since k v J1 (a T)); i.e., J0 (a ) is not maximal.I

Example 2.1. Consider the set covering polytope defined by the matrix

1110000~1101000
A= 1011000

0111100
1010111
0111010

The inequality Z(x. j=l,...,6) _ 2, obtained by applying Procedure C to

the subsystem consisting of rows 1, 2, 3, 4, 6, is not minimal, since the set

o= {7} associated with it is not maximal: column 6 can be added to Jo

without having to transfer any column from J to J2, since each of the

remaining columns of J1 ' namely 1, 2, 3, 4, 5, contains at least one 0 in

some row i such that ai6 = a.7 = 0. Thus (x. : j=l,...,5) 2_ 2 is a valid

inequality. It is also minimal, since the associated set J = {6,7} is

maximal. Another valid inequality in class C is 2x1 + x2 + x3 + x4 > 2. The

associated set J = {5,6,7} is maximal, so this inequality is also minimal.I

Next we address the question as to which inequalities of the class C are

facet inducing for PI(A). One obvious necessary condition for this is that

7

" I , .. J . r u b .



the inequality be minimal. In stating the conditions for an inequality to be

facet defining, we will assume that PI(A) is full dimensional. This is the

case if and only if

(2.2) 1(a j z N) >2, i a M.

Assuming that (2.2) holds involves no loss of generality; for if not, then

either PI(A) = *, or else there exists some F c N, F 0, such that

x a PI(A) implies x. = 1 for all j z F. In the former case the inequality
IJ

is obviously not facet defining; whereas in the latter case setting xj 1,

j a F, and removing the inequalities satisfied by this assignment, produces

a set covering polytope for which (2.2) is satisfied.

S
For any valid inequality a x > 2 in C, consider the set of pairs

j, h z J1 such that

(2.3) a.. + a > 1 for all i a (J). 2.) ij aih -0

J,We will call these pairs the 2-covers of A(jo) , the submatrix of A whose

rows and columns are indexed by M(J0 ) and J1 ' respectively. We define the

2-cover graph of A as the graph G that has a vertex for every j t J

Jiand an edge for every 2-cover of A (jo ) .

Further, for every k e J09 we define T(k) as the set of rows such that

k is the only column in J to cover T(k); i.e.,

T(k) = {i & M I a.k = 1, a.. = 0 for all j z J \ {k}}.

Theorim 2.3. Let PI(A) be full dimensional and let a x > 2 be a minimal

valid inequality for PJ(A), with S = M(J). Then a x > 2 defines a facet of

PI(A) if and only if

(i) every component of the 2-cover graph of A has an odd cycle;HE M(J0 )
(ii) for every k a Jsuch that T(k) X # there exists either

(a) some j(k) a J such that a.(k) = I for all i z T(k); or

8
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(b) some pair j(k), h(k) a J, such that a i(k) + a ibk ) >_ 1

for all i za TOk) u'MJ 0 ).S

Proof. Necessity. Suppose a x > 2 defines a facet of PI(A). Then there

exists a collection of n affinely independent points x a PI(A), such that

x = 2 for i = l,...,n. Let X be the n x n matrix whose rows are the

i
vectors x ; then X is of the form (modulo row and column permutations)

'""'X 1 0 X3

where the columns of X1, X2 and X3 are indexed by J1 9 J2 and J0 respectively,

X is the identity matrix of order I 21, and every row of X is a row of the

edge-vertex incidence matrix of the 2-cover graph G of A/ jo) "  Since X is

nonsingular, X1 is of full column rank, and hence every component of G is

nonbipartite. Thus (i) holds.

To show that (ii) also holds, suppose there exists k v J0 and T(k) for

which neither (a) nor (b) is satisfied. Then xk = 1 for every x e P (A)

SSsuch that a x = 2, which in turn implies (since P I(A) is full-dimensional)

that the inequalities a x > 2 and xk < 1 are the same, a contradiction.

Sufficiency. Suppose conditions (i) and (ii) are satisfied. We exhibit
a"etofn k sc tht Sk
a set of n affinely independent points x k PI(A) such that a x = 2,

k 1 ,...,n.

t tFor t = 0, 1, 2, let e and 0 denote the IJ I-vector whose components
t

t thare all 1 and all 0, respectively. For t = 0, 1, 2, let e. be the h

unit vector with IJtj components.

949
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Our first 1Joi vectors xk, k a Jo9 are defined as

(e - el0, 0 , e.) for some j 2 if T(k) = * and J

0 0 1 1 2(e - , ej + e, 0) for some 2-cover (j,h) if

k T(k) = 4= J2e 0  e 0h 01 e 2) if T(k) * and (a) holds
i(k)) (with j(k) as in (a))

0 0 1 1 2(e -k, e (k) + eh(k) 0) if (k) € and not (a) but (b)
holds (with j(k), h(k) as in (b))

By property (ii), these vectors exist and belong to PI(A).

Our next 1i1I vectors are of the form
IXk 01 1 2

Xk = (e 0 , + 02 )  k a Jl
e j(k) + h(k)' 0 "

where the pair j(k), h(k) a J1 satisfies (2.3), and the vectors eJ(k) +

1eh(k) are linearly independent. By property (i), there exists a set of

1311 vectors xk  P I(A) satisfying these conditions.

Finally, the last 'J21 vectors are of the form

k 01 2x = (e0 , 0, ek), k a J2 "

Here the vectors 2 form the identity matrix of order 1J21. The existence
k

of these vectors x k PI(A) follows from the definition of J2 "

It is now easy to see that the matrix X whose rows are the n vectors
k k S k
x , k a J 0 u J 2' is nonsingular. Also, every x satisfies a x = 2.

Hence S x > 2 defines a facet of PI(A).I

Example 2.2. Consider the matrix A of example 2.1 and the valid

inequality E(x. j 1,...,5) > 2 for PI(A), which was shown to be minimal.

JlJ
We have J 1 = {l,...,5}, J 0 ={6,7} and MP30) fl,2,3,4}. The two-cover graph

of AM(jo), shown in Fig. 1, is connected and has odd cycles; thus condition

10
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Fig. 1

(i) of Theorem 2.3 is satisfied. The only k a J0 such that T(k) 4 * is 6,

with T(6) = {6); and any of the pairs h, j a JI satisfies aih + a > 1 for

- all i a M(Jo) u T(6) = {1,2,3,4,61. Hence I(x : j = 1,...,5) _ 2 induces a

facet of P (A).1

3. The Class C and Chvatal's Procedure

We have shown in section 2 that every valid inequality for PI(A) with

coefficients equal to 0, 1 or 2 is dominated by some inequality in the class C,

hence is obtainable by applying to the system Ax > 1 our Procedure C. The

latter is easily seen to be a specialized version of Chvatal's procedure [4],

which consists of recursively performing the following operations on the

constraint set of an integer program:

0. Let the current set of constraints be

M(I) (aijx.j : jN) _> bi, i a M, with all coefficients integer.

11



At the start, this is the set of inequalities which, together with the

* integrality conditions, defines feasibility.

1. Generate all distinct inequalities of the form 7(X)x > 70 (X), where

y(a) = i )], j aN

(3.1)

7O0.)- [x.Xibi: iM)]

with X. > 0, i z M, where ral is the smallest integer greater than

or equal to a, and where 7j(X), j a N, and 70 (X), are relatively prime.

2. Redefine the system (I) by adding to it all the inequalities generated

under 1, and go to 1.

Stop when no new inequalities can be obtained.

This procedure is known to yield the convex hull of the integer points

satisfying the initial set (I) after a finite number of applications of the

recursive steps 1, 2. The number of times the recursion needs to be applied

to obtain a particular inequality is called the rank of the inequality. The

original system together with the rank 1 inequalities forms the elementary

closure of the system. Thus from Theorem 2.1 we have the following

Corollary 3.1. Every minimal valid inequality for PI(A) with coefficients

equal to 0, 1 or 2 belongs to the elementary closure of the system Ax _> 1,

0<x<1.

Procedure C of section 2 is a specialized version of Step 1 above, with

the multipliers X. defined by
i

(3.2) X. =(3.2) { (I:I-E)-l if i a S
0 otherwise

for some S CM and 0.5 < e < 1.

It turns out, however, that this choice of multipliers is much less special

12



than it seems. In particular, again from Theorem 2.1, we have the following

Corollary 3.2. Let -y ())x ) 'o(0O) be any rank I Chvatal inequality

obtained frow the systew Ax ) l, 0 < x < 1, with y0 X) = 2. Thev A A)

(A *), where A (X) is defined by (3.2), with S = Moro(A

In view of our findings that all minimal valid inequalities for PI(A) with

coefficients equal to 0, 1 or 2 belong to the elementary closure of Ax > 1, 0 <

x < 1, the question arises whether this property extends to some larger class

of valid inequalities. Our next theorem answers this question in the negative.

Theorem 3.3. For every k > 3, there exists a 0-1 matrix A and a

ainizal valid inequality Px > k for PJ(A) that is not contained in the

eleaentary closure of the systew Ax > 1, 0 < x (1.

Proof. Let k > 3 and let A be the edge-vertex incidence matrix of

Kk+1, the complete graph on k + 1 vertices. Then the inequality

(3.3) (x: j=l,...,k+l) > k

is satisfied by every x c PI(A), since any vertex cover of Kk+I contains at

least k vertices. Also, (3.3) is minimal.

Now if the inequality (3.3) belongs to the elementary closure of the system

Ax > 1, 0 < x < 1, then there exists a set of multipliers Aij > 0, i =

1,...,k, j = i+l,...,k+l; TMh and 7h, h = 1,...,k+l, satisfying the relations

::-: 12 + X13 + X14 + ""+ Xl,k+l + JA1 - 71 - 1

,12 + 23 + X2 4 + ' +  2k+l + 02 - 7 2

1.l3 + 23 + 34 +3,k+l
(3.4).................................

1,'. Al'k+l "2,k+l k,k+l + k+l -k+ 1

and

4' (3.5) (ij: i=l,...,k;j=i+l,...,k+l) - 1 (Yh h=l,...,k+l) > k - 1.

* 13
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But adding the inequalities (3.4) yields

21(A.: i=l,...,k;j=i+l,...,k+l) + I(h -h : h-l,...,k+l) < k + 1,

or

M (ij : i=l,...,k;j=i+l,...,k+l) - '(-fh :h=l,...,k+l)

< I(i : i=l,...,k;j=i+l,...,k+l) + 1( h  
7h : h=l,...,k+l)

1 
1 I

< jk +

which for k > 3 contradicts (3.5).1

4. The Class C and Full Circulant Submatrices

In this section we examine the relationship between minimal valid

.:' inequalities for P I(A) with coefficients equal to 0, 1 or 2, and circulant

submatrices of A with exactly one zero in every row and column. Such a

matrix, if of order k, will be denoted Ck-l This is the k x k matrix withk*

*: exactly k - I ones and one zero in every row and column. It will be called

the full circulant of order k.

Consider the inequality a x > 2, where S = M(J0 ). Often there exist

proper subsets T c S such that aTx > 2 is the same inequality as

a Sx > 2. Such a subset T c S will be called C-equivalent to S. If

T is C-equivalent to S and no proper subset of T has this property, we say

that T is a minimal C-equivalent subset of S. A set S = M(J0 ) may have

several minimal C-equivalent subsets.

Now let the inequality a x > 2 be minimal, i.e., let J be maximal. If

M(J0 ) has a C-equivalent subset of cardinality j 2, then the inequality
S

a x > 2 is of course dominated by the sum of at most two inequalities of the

system Ax > 1. Suppose this is not the case, i.e., every minimal C-equivalent

subset of M(J0 ) has cardinality > 3. Then we have the following
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Theorem 4.1. For every minimal C-equivalent subset T of W(a) the matrix

j~l t-lA2T contains as a submatrix Ct-, the full circulant of order t = I •
T S

Proof. Since T is minimal with respect to the property that a = a , and

SQ S
a x > 2 is a minimal inequality, it follows that for any Q C T, a. > a.

S Q J*
for some ja N. Since J0 (a 

S ) C j0 (a ), j i J0 (a S). Also, j J2 (a S).

Thus J(a S ), and a.. = 1 for all i a Q, a.. = 0 for some i a T \ Q.1uJ* =*

A. •Since this is true for any proper subset of T and in particular for every

subset of the form Q = T \ (ii for some i a T, it follows that for every row i

a T there exists a column j(i) a J1 such that ah() = 0 for h = i and ah.(-)

= 1 for all h a T \ (i}. Clearly, the t columns j(i), i a T, must be dis-

tinct since every column has exactly one zero in position i. But the

submatrix of A.T consisting of these t columns is precisely Ct

xaple 4.1. Consider the matrix

1101010

A= 0011100
0000111
0101001

The inequality of C associated with the row set S = (2,3,4,5} is

x2 + x3 + x4 + x5 + x6 + x7 _ 2,

and it is minimal, since J0 = {1} is maximal: any attempt to extend J0

results in the transfer of some column from J1 to J2 " (For instance, if

column 2 is appended to J0 the set M(J0 ) shrinks to rows 3, 4 and column 5

is transferred to J

However, the set M(J0) = S is not minimal for the inequality a x > 2.

Removing any one of the four rows of S produces a minimal C-equivalent subset.

22f T 21  = the subset {2,3,4}, AT contains C3 in columns 3, 5, 6.

For T 2 { 2,3,51, C2 consists of columns 2, 3, 4 of AT. Similarly, for

15
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T3 = {2,4,51 and = {3,4,5}, C3 consists of columns 2, 6, 7 of AT and

columns 4, 5, 7 of AT., respectively.1

Theorem 4.1 establishes a correspondence between the minimal inequalities

of the class C and the full circulant submatrices of A. The correspondence is

S
not one to one, since for any given minimal inequality a x > 2 of C, there

may be several minimal sets T. C-equivalent to S, each one containing one or1

several full circulants of order ITi1 . Nevertheless the full circulants of

A can be used to list all the minimal inequalities in the class C, as will

presently be shown.

*: For convenience, we will adopt the notation

JO(S) .. a N I = 0 for all i a S}, S c M.

Clearly, J0 (S) = J0 (a S), and also J0 (T) = J0 (a S) for any C-equivalent subset

T of S.

Corollary 4.2. Every minimal inequality in C can be obtained by using

Procedure C witb S restricted to subsets of M such that

(i) Jo(S) is zeximal;

(ii) AS contains a full circulant of order IsI;

(iii) There exists no T 3 S satisfying (i) and (ii).
rs~r

Proof. From Theorem 4.1, Procedure C can be restricted to sets S

satisfying (i) and (ii). Further, Procedure C used with a set S that

satisfies (i), (ii) but not (iii) yields the same inequality as when used with any

S * S such that J0 (S') = Jo(S) and S' satisfies (ii), (iii) (with S = S').|

The correspondence between full circulants and minimal members of the

class C is also helpful in counting the latter, viz., in bounding their number.

Corollary 4.3. The number of minimal inequalities in C is O(Ai), where a

= IP and k is the cardinality of the largest full circulant submatrix of A.
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Proof. From the previous Corollary, the number of minimal members of C is

bounded by the number of row sets T such that AT contains Ct  with t IT.
t

Since A has (M) row sets of size i, if k is the order of the largest full

circulant submatrix of A, then the number of row sets T such that AT

contains a full circulant of order ITI is bounded by

k m
I (C) < m

i=3

It is a well known result in polyhedral combinatorics (see, for instance,

[6], [], [8]) that minimal inequalities for a polyhedron PI(A) can often be

obtained by lifting minimal inequalities for a polyhedron PI(A V ) for some

V c N. The above Theorem and its Corollaries suggest that the minimal inequal-

ities of the class C for PI(A) might be obtainable by lifting the minimal in-

equalities of C for some polyhedra of the form PI(AK), where K is the column

index set of a full circulant. This, however, is not true, since in most cases

where a x > 2 is a minimal inequality for PI (A), the corresponding inequality

"(x: jK) > 2
" P A K )

. is not minimal for PI(A This is illustrated by the following

Kxenple 4.2. Let

0 ' 1 1 0 1 0 0 0
"" A = 10 1 0 0 1 0 0

0 1 0 1 1 0 1 1

01010110

10011001.

The inequality

X1 + ... + x6 >2

is minimal for PI(A), but

x. + 2 . x 3 >2

17
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is not minimal for P (AK), where K = (1,2,31, although A" contains the full

circulant C2.3

Thus restricting ourselves to the lifting of minimal inequalities for

polyhedra of the form P (A ), with K defined as above, would make us miss

many, if not most, minimal inequalities for PI(A). The situation changes,
K L

however, if instead of A we consider submatrices of the form A with L

K U J0 as shown by our next result.

Theozw 4.4. Let a x > 2 be a inimal valid inequality for PT(A),

let T be a minimJa C-equival et subset of M(J,), with I 2l 2 3, and let K be

the column index set of a full circulant Ct- contained in 1 , mere t=
te cwhiret

121 . Then

(4.1) (x. jKl) ) 2
is a minimal valid inequality for P (/) where L = K u J..

Proof. If Procedure C is applied to ALx > 1 with S = M(J0 ), we obtain

the inequality (4.1), which is thus valid for PI(AL). Also, J is maximal

AL
for A, since it is by definition maximal for A. Thus (4.1) is minimal

for P I(AL).

In the above Example, K = {1,2,3), J0 = (7,8), and
x1 + x 2 + x 3 > 2

is a minimal valid inequality for PI(A L), where L = {1,2,3,7,81.

The converse of Theorem 4.4 is not true in general; i.e., if A contains the

t-lfull circulant C-1 with row and column sets R and K, respectively, and (4.1)

is a minimal valid inequality for PI(AL), where L = K u J0(R), the

corresponding inequality aRx > 2 obtained by applying Procedure C to the

system Ax > 1 with S = R is not necessarily minimal. To see this it is

18
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sufficient to notice that although J0 (R) is maximal with respect to A , it

need not be maximal with respect to A.

.xemple 4.3. Consider the matrix

-\.'1 1 0 0 0 1 0 1
-\'0 1 1 0 0 1 1 0
S1 0 1 0 0 0 1 0

, A- 1 1 0 0 0 0 0 1
.. 0 1 1 0 0 0 1 0

0 1 0 1 0 1 0 1o01100010

The circulant C2 in the upper lefthand corner of A has row and column

sets R = (1,2,3} and K = {1,2,31, respectively, and J0 (R) = {4,5}.

The inequality

x1 + x2 + x3 > 2

is minimal for PI(A ), where L = K u J0 (R) = {I,...,5}, since J0 (R) is

is maximal with respect to AL. On the other hand, the inequality

xI + x2 + x3 + x6 + x7 + x8 > 2,

obtained by applying Procedure C to Ax > 1 with S = R, is not minimal,

since J0 (R) is not maximal with respect to A: it is possible to add

column 6 to J without transferring any column from J to J2 " If J;

denotes the augmented set {4,5,61, M(J0 ) = {3,4,5}, and the inequality

obtained by applying Procedure C with S = M(J;) is

x1 + x2 + x 3 + x7 + x 8 > 2,

- which is minimal and strictly dominates the inequality obtained by using

S R.I

Further connections between minimal and facet defining inequalities for

polytopes of the form PI(AL ) and P (A) can be established by using the

theory of inequality lifting, but this is left to another paper.

19



5. Generating Minimal Inequalities

We first discuss systematic ways of generating all minimal inequalities in

C, then we address the issue of generating certain subsets of inequalities.

The set of minimal inequalities in C can be partially ordered by

inclusion applied to the corresponding sets J0* In other words, if ax > 2

and Px > 2 are minimal inequalities in C, one can say that ax > 2 precedes

Px _ 2 if J0(a) c J0 (P). Thus one can define a directed graph G with a

node for every minimal inequality of C, and an arc for every pair of minimal

inequalities such that one member of the pair is an immediate successor of the

other.

To generate all minimal inequalities without predecessors, one can use

oTheorem 4.1 and list all maximal sets T c M such that AT contains a full
TT

" circulant submatrix. For each such T, if J0 (T) is maximal, then a Tx > 2

is one of the minimal inequalities without predecessors; and conversely, all

such inequalities can be obtained this way.

Given a minimal inequality a Sx > 2, its immediate successors in G are

those inequalities a x > 2 such that T c S, J0(aT) is maximal, and there

exists no W, with T c W c S and J0 (T) J0 (W) J0 (S), such that J0 (W) is

maximal. Since there is no reason to be interested in generating inequalities

that are the sum of two inequalities of Ax > 1, this rule can be amended by

requiring that I T I > 3.

S..' These two rules, one for generating all the minimal inequalities without

predecessors and the other for generating all immediate successors of a given

inequality, suffice for generating the whole family of minimal inequalities in

C. Note, however, that this procedure is not free of redundancy, in that a

K minimal inequality can have more than one predecessor. Thus some checking

i required to exclude repetition.
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Example 5.1. Consider the matrix:

10l1110100011000

A= 110110010001100
~111010001000110

111100000100011

The following tableau shows the minimal inequalities in C, all of which happen

to define facets of P (A).

Ineq. M(Jo) Jo aj: j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
No.
1 1,2,3,4,5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1,2,3,4 10 1 1 1 1 2 1 1 1 1 0 1 1 1 1 1
3 1,2,3,5 9 1 1 1 2 1 1 1 1 0 1 1 1 1 1 1
4 1,2,4,5 8 1 1 2 1 1 1 1 0 1 1 1 1 1 1 1
5 1,3,4,5 7 1 2 1 1 1 1 0 1 1 1 1 1 1 1 1
6 2,3,4,5 6 2 1 1 1 1 0 1 1 1 1 1 1 1 1 1
7 1,2,3 9,10,14 1 1 1 2 2 1 1 1 0 0 1 1 1 0 1
8 1,2,4 8,10 112121101011111
9 1,2,5 8,9,13 1 1 2 2 1 1 1 0 0 1 1 1 0 1 1
10 1,3,4 7,10 1 2 1 1 2 1 0 1 1 0 1 1 1 1 1
11 1,3,5 7,9 1 2 1 1 2 1 0 1 0 1 1 1 1 1 1
12 1,4,5 7,8,12 1 2 2 1 1 1 0 0 1 1 1 0 1 1 1
13 2,3,4 6,10,15 2 1 1 1 2 0 1 1 1 0 1 1 1 1 0
14 2,3,5 6,9 2 1 1 2 1 0 1 1 0 1 1 1 1 1 1
15 2,4,5 6,8 2 1 2 1 1 0 1 0 1 1 1 1 1 1 1

S16 3,4,5 6,7,11 2 2 1 1 1 0 0 1 1 1 0 1 1 1 1

Consider the first inequality with S = M = {1,...,5}. S contains the circu-

lant C54 whose columns are 1,...,5. We have Jo(S) = , = (1,.,1) and

" 0o(S) is maximal. Thus a x > 2 is a minimal inequality.

Consider the second inquality with T = (1,2,3,41 and J0 (T) = (10}, and

~TT
a T=(1,1,1,1,2,1,,,,0,1,1,1,1,1). Since J0 (T) is maximal, a x > 2 is a

minimal inequality. Since there exists no set W such that T c W c S

and Jo(S) f JO(W) f Jo(T), aTx > 2 is an imediate successor of aSx > 2.

21
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Fig. 2.

* The other relations can be obtained similiarly. Fig. 2 shows the directed

graph representing the precedence relation between the inequalities in the

tableau. In this particular case, the graph has a single source, due to the fact

that J0 (S) is maximal for S = M.

An alternative way of generating all the minimal inequalities of C that

are not the sum of two inequalities of Ax > 1, is to use the above defined

ordering but work backwards, from larger to smaller sets J0 " To generate all

minimal inequalities without successors, one can list all triplets T of

pairwise nonorthogonal rows such that there exists no other triplet W with

Jo(T) c Jo(W). For each such T, Jo(T) is easily seen to be maximal, hence

T x > 2 is a minimal inequality without successors; and conversely, each such

inequality can be obtained this way.

SGiven a minimal inequality a x > 2, its immediate predecessors in G are

those inequalities a x > 2 such that S c T, J0 (T) is maximal, and there
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exists no W with S c W c T and Jo(S) Jo(W) Jo(T) such that J0 (W)

, :is maximal. It follows from these conditions that T \ S must have the property

that a..= for at least one i a T \ S, j z J2 (S). Thus when no such T

exists, the minimal inequality a x > 2 has no predecessors.

Again, this procedure has redundancies, since a minimal inequality may

have more than one successor; therefore checks are required to avoid

repetition.

A frequent situation encountered in practice is the one where a fractional

solution to the current problem is available, and one is interested in

generating an inequality in C that cuts it off. Let R be a fractional

solution to Ax > 1, 0 < x < 1, with

I { N . 1), F: {j N I 0 < R. < 1),

and let

Q = {i a M R RI 1 implies a.. = 0}.

Theorem 5.1. Let

(15.1) 1(a x.: j F) 2
JJF

be an inequality obtained by applying Procedure C to the system A F > 1,

. < x _< 1, such that

(5.2) 1(a . :j ) < 2,

and let T be any C-equivalent subset of M(JO('aF)) (=Q). Then the inequality

l S
a x > 2 obtained by applying Procedure C to the system Ax > 1,

0 < x < 1, with S =T, cuts off T.

Conversely, if ax 2 is a valid inequality for PI(A) that cuts off

g, then a. = 0, j aI, and (5.1) is a valid inequality for F(AF that

cuts off Xr

Proof. In proving both statements we will make use of the following

fact that we claim to be true. If ax > 2 is a valid inequality for PI(A)
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that cuts off R, then a. 0 for all j a I. For suppose that a. > 1JJ-

for some ji a I. If a. 2, then ad1 > a.R. = 2, contrary to the assump-
J*J*

tion that ax > 2 cuts off R. Thus a. = 1. Then there exists

i z M(J0 (a)) such thata. . = 0, or else ax > 2 would not be valid for

P1 (A). But then substituting R, 1 into the inequalities a1*x > 1 and

ax > 2 yields

(a R JN\{J,}) > 1

and

-, R( j8j1) > 1,

respectively, with a. . ( a. for all j r N \ {j,}. Since R satisfies the
1J - j

first of these inequalities, it cannot violate the second one. This proves

the claim.

SNow let (5.1) and T be as stipulated, and suppose a x > 2, where S : T,

does not cut off Z. Since R satisfies (5.2), it must be the case that

aS. > 0 for some j a I, contrary to what we have just proved. Thus ax > 2j

cuts off R.

Conversely, if ax > 2 is any valid inequality for PI(A) such that

aR < 2 then a. = 0 for j a I and hence (5.2) holds. Also, the same in-
J

stance of Procedure C that yields ax > 2 when applied to the system Ax > 1,

0 < x < 1, yields the inequality (5.1) when applied to the system

AQxF >_ 1, 0 < xF (_ 1, hence (5.1) is valid for PI(A F).

Example 5.2. Consider the problem of minimizing x1 + x2 + x3 + 3x4 +

3x5 + 3x7  subject to Ax > 1, x r [0,1}7, where A is obtained from the

matrix of Example 2.1 by adding the row (0,0,0,1,1,1,1). The (unique)
111

optimal solution is R (!,!,!,0,0,l,0). We have F = {1,2,3}, I = {6} and
3

={1,2,3,4}, and Ri + 2 +x 3 = < 2, i.e., condition (5.2) holds.

24
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-' Applying Procedure C to Ax > 1, 0 < x < 1, with S = Q, we obtain the

inequality xI + X 2 + X 3 + X 4 + x5 > 2, which cuts off R.1

Thus in order to generate a minimal inequality in C that cuts off a given

fractional solution R, one can apply either one of the two procedures dis-

Fcussed at the beginning of this section to the subsystem AsXF_ 1,
F

0 < xF < 1, up to the point where an inequality for Pi(AS) is generated

that cuts off R the corresponding inequality for P (A) that cuts off
PSF I

R is then easily identified. If no inequality for Pi(AF) is found that

cuts off RFt then there is no inequality for PI(A) in C that cuts off R.

N; Some of the more recent methods for solving set covering problems never
mw

solve the linear programming relaxation of the problem and thus never

generate fractional solutions to be cut off. These methods (see, for example,

(31) use instead subgradient optimization or other techniques to find an

approximate (feasible) solution to the dual of the linear programming

relaxation, whose objective function value provides a lower bound on the value

of an optimal cover. To use the inequalities of the class C in this context,

one has to be able to answer the following question: given a feasible solution

u to the dual of the linear relaxation of the set covering problem, is there an

inequality in C whose addition to the constraint set would make it possible to

strengthen the lower bound associated with u? Our next theorem addresses

this question.

heorne 5.2. Let ax > 2 be a minimal valid inequality for PI(A), and

let T be any C-equivalent subset of N(Jo(*)). Further, let u a A01 satisfy

u ) 0, uA ( c, and define

MTk  m in (c - I (uia is AA=N T) J •J(a.)), k 1 , 2,

6 (T) 1 in(6 (T) (T)ZI
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Theo

m

I(u. . icfT) + Z(T) <cx

for all x a (0,1)/ satisfying Ax > 1.

Proof. Define U c i3+1 by

"0 ia T

- ' . = U. i a M \ T

6(T) i =?M 1.
Then U > 0 and

c - I(i.a. :iM) - U
• i lMl+l~j-. J 1j

c. - (u.a. : iaM\T) - 6(T)a. j a N

6(T)I > 0 j a Jl(,)

" c. - -(u.a. : iaM\T) - 6(T)2 > 0 j a J2(a)

0 > 0 jaJ(o,
N0

i.e., U is a feasible solution to the linear program dual to

(5.3) min{(cx Ax > 1, ax > 2, x > 0}.

Therefore

-(u.: i--1,...,IMl) = Z(u. ieM\T) + 26(T)

< ex

for any x satisfying Ax > 1, ax > 2, x > 0, hence for any x a {0,1}

satisfying Ax > 1.1

Corollary 5.3. Adding ax ) 2 to the constraint set Ax) 1 strengthens

the low~er bound on cx provided by u if and only if

, ,(5. 4) 6 (T) > (Ui : is V).

If (5.4) holds and, in addition, u is an optimal solution to the dual of

A? 26
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(5.5) min(cx : Ax > 1, x > 0),

then the inequality ax > 2 cuts off all optimal solutions to (5.5).

Proof. The difference between the lower bounds provided by U and u

(i.e., the difference due to ax > 2) is

Vu i  ieM\T) + 26(T) - (ui  iM)

= 26(T)- I (u. : itT),

which proves the first statement.

If this difference is positive and u is an optimal solution to the dual of

(5.5), then for any optimal solution x to (5.5),

cx = (u : iaM)

< -(U. : i&M\T) + 26(T) < cx

for any x satisfying Ax > 1, ax > 2, x > 0. Hence the inequality ax > 2

cuts off X.I

Note that a straightforward modification of Theorem 5.2 and Corollary 5.3

holds for the case when the constraint set Ax > 1 is amended by
i
a x > 2, i a M , i.e., the dual constraint set uA < c is replaced by

uA + J(u.ai  iM') < c.1

In other words, inequalities in C that improve the lower bound can be

generated recursively.

A
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